3,666 research outputs found

    Model for Anisotropic Directed Percolation

    Full text link
    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio μ\mu between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of μ\mu. This result suggests that Sinai's theorem proposed originally for isotropic percolation is also valid for anisotropic directed percolation problems. The new invariant also yields a constant fractal dimension Df1.71D_{f} \sim 1.71 for all μ\mu, which is the same value found in isotropic directed percolation (i.e., μ=1\mu = 1).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.

    Finite-Size Scaling in Two-dimensional Continuum Percolation Models

    Full text link
    We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of mass M to sample size L as generally accepted for isotropic lattice problems, but with a positive sign of the slope in the ln-ln plot of M versus L. Another interesting aspect of the finite-size 2D models is also suggested by plotting the normalized mass in 2D continuum and lattice bond percolation models, versus an effective percolation parameter, independently of the system structure (i.e. lattice or continuum) and of the possible directions allowed for percolation (i.e. isotropic or directed) in regions close to the percolation thresholds. Our study is the first attempt to map the scaling behaviour of the mass for both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure

    The empirical evaluation of thermal conduction coefficient of some liquid composite heat insulating materials

    Get PDF
    We experimentally determined the coefficients of thermal conductivity of some ultra thin liquid composite heat insulating coatings, for sample 1 [lambda]=0.086 W/(m [x] C), for sample 2 [lambda]= 0.091 W/(m [x] C). We performed the measurement error calculation. The actual thermal conduction coefficient of the studied samples was higher than the declared one. The manufactures of liquid coatings might have used some "ideal" conditions when defining heat conductivity in the laboratory or the coefficient was obtained by means of theoretical solution of heat conduction problem in liquid composite insulating media. However, liquid insulating coatings are of great interest to builders, because they allow to warm objects of complex geometric shapes (valve chambers, complex assemblies, etc.), which makes them virtually irreplaceable. The proper accounting of heating qualities of paints will allow to avoid heat loss increase above the specified limits in insulated pipes with heat transfer materials or building structures, as well as protect them from possible thawing in the period of subzero weather

    Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae

    Full text link
    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (+/-40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated +/-5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (~ 87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.Comment: 11 pages, 6 figure

    The afterglow and kilonova of the short GRB 160821B

    Full text link
    GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z=0.1613, at a projected physical offset of 16 kpc from the galaxy's center. We present X-ray, optical/nIR and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modeling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at 3.5 d. This is consistent with a structured jet seen slightly off-axis while expanding into a low-density medium. Analysis of the kilonova properties suggests a rapid evolution toward red colors, similar to AT2017gfo, and a low nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (M_ej < 0.006 Msun) and velocities (v > 0.05 c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.Comment: 14 pages, 6 figures, MNRAS, in press. Moderate revision, added Figure 5 and X-ray data to Table

    Penetration of hot electrons through a cold disordered wire

    Full text link
    We study a penetration of an electron with high energy E<<T through strongly disordered wire of length L<<a (a being the localization length). Such an electron can loose, but not gain the energy, when hopping from one localized state to another. We have found a distribution function for the transmission coefficient t. The typical t remains exponentially small in L/a, but with the decrement, reduced compared to the case of direct elastic tunnelling. The distribution function has a relatively strong tail in the domain of anomalously high t; the average ~(a/L)^2 is controlled by rare configurations of disorder, corresponding to this tail.Comment: 4 pages, 5 figure

    The empirical definition of total emissivity of modern super-thin liquid composite thermal insulators

    Get PDF
    Modern world trends in the field of energy and mineral resources preservation policy involves the need for a more cost-efficient use of the Earth's natural resources, including in the field of construction industry. Using insulation modern materials would largely solve this problem. The acceptability appraisal of various advanced heat-insulating blankets is a crucial task, which requires experimental verification of total emissivity empirical definition of modern super-thin liquid composite thermal insulators and their real value definition. Method of investigation is as follows: an empirical definition of blankets emissivity using the proposed laboratory equipment, which comprises a system of "gray" bodies, thermocouple probe and a source of continuous heat flux. Total emissivity of modern super-thin liquid composite thermal insulators is experimentally determined. It amounted e = 0.89 for sample # 1, and e = 0.87 for sample # 2 at a temperature of 35-65 °C. It was found that the actual emissivity of the samples was higher than it had been declared
    corecore